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Abstract

DNA–protein interaction is one of the most crucial interactions in the biological system, which decides the fate of many processes
such as transcription, regulation and splicing of genes. In this study, we trained our models on a training dataset of 646 DNA-binding
proteins having 15 636 DNA interacting and 298 503 non-interacting residues. Our trained models were evaluated on an independent
dataset of 46 DNA-binding proteins having 965 DNA interacting and 9911 non-interacting residues. All proteins in the independent
dataset have less than 30% of sequence similarity with proteins in the training dataset. A wide range of traditional machine learning
and deep learning (1D-CNN) techniques-based models have been developed using binary, physicochemical properties and Position-
Specific Scoring Matrix (PSSM)/evolutionary profiles. In the case of machine learning technique, eXtreme Gradient Boosting-based
model achieved a maximum area under the receiver operating characteristics (AUROC) curve of 0.77 on the independent dataset
using PSSM profile. Deep learning-based model achieved the highest AUROC of 0.79 on the independent dataset using a combination
of all three profiles. We evaluated the performance of existing methods on the independent dataset and observed that our proposed
method outperformed all the existing methods. In order to facilitate scientific community, we developed standalone software and
web server, which are accessible from https://webs.iiitd.edu.in/raghava/dbpred.
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Introduction
In every living organism, life is entirely dependent on
molecular interactions, such as DNA–protein, RNA–
protein and protein–protein interactions. These inter-
actions perform several biological functions in the cells
of living organisms [1]. DNA–protein interactions play a
crucial role in a wide range of biological activities that
include transcription, gene expression regulation and
splicing [2–5]. Several experimental methods are used
to confirm the interactions between protein and DNA.
The availability of experimental data on 3D structures of
protein–DNA complexes supports researchers to reveal
the essential knowledge on protein–DNA interactions.
These tertiary structures of protein–DNA complexes
are essential to understand conformational changes
of DNA molecules, the importance of hydrogen bonds,
amino acid properties, electrostatic interaction, van
der Waals interaction, etc. [6–15]. Due to advancement
in sequencing technology, DNA-binding proteins with
amino acid sequences are growing with an exponential
rate over the years. Unfortunately, due to limitations of
structure determination techniques, only a fraction of
protein–DNA complex structure has been deposited in

Protein Data Bank (PDB) [16]. AlphaFold is the recent
advancement in the field of protein structure prediction,
which allows to predict the tertiary structure of a protein
with high accuracy [17].

In the last few decades, several attempts have been
made for the prediction of DNA-binding residues using
computational methods [2, 18–20]. Broadly, these tools
can be divided into four major categories, i.e. sequence-
based methods [21], structure-based methods [22, 23],
evolutionary methods [24] and hybrid methods which
used both structure and sequence information [25, 26].
The comprehensive information of all the available
methods and tools is provided in Table 1. Most of the
earlier methods have been trained on a limited number
of protein–DNA complex structures that include BindN
[19], BindN+ [27], BindN-RF [28], MetaDBSite, CNNsite
[29], DP-Bind [21], SVMnuc and NucBind [30]. Recently,
methods have been trained on a large dataset of protein–
DNA complexes that include HybridNAP [31], DRNApred
[32], ProNA2020 [33], GraphBind [34] and GraphSite [35].
Despite tremendous advancement in the field over
the years, the performance of DNA-binding residues
prediction methods is far from satisfactory. Thus, there is
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Table 1. List of tools/software developed for the prediction of DNA-interacting residues

Tool Year Description (link/standalone) Dataset Redundancy Functional

DBS-Pred [36] 2004 Neural network-based method
http://www.netasa.org/dbs-pred/

PDNA-62 25% NO

DBS-PSSM [37] 2005 PSSM-based prediction method
http://www.netasa.org/dbs-pssm/

PDNA-62 25% NO

Pro-DNA [38] 2005 Structure-based prediction method
http://proteomics.bioengr.uic.edu/pro-dna

115 protein-DNA
complexes

– NO

BindN [19] 2006 SVM based DNA/RNA-binding site prediction
http://bioinformatics.ksu.edu/bindn/

PDNA-62 25% NO

DNABindR [39] 2006 Naïve Bayes classifier-based method
http://turing.cs.iastate.edu/PredDNA/predict.html

171 DNA-binding
proteins

30% NO

DP-Bind [21] 2006,
2007

PSSM-based prediction method
http://lcg.rit.albany.edu/dp-bind/

PDNA-62 25% YES

BindN-RF [28] 2009 RF-based prediction method
http://bioinfo.ggc.org/bindn-rf/

PDNA-62 25% NO

DBindR [40] 2009 Evolutionary information-based prediction method
http://www.cbi.seu.edu.cn/DBindR/DBindR.htm

DBP-374 25% NO

BindN+ [27] 2010 PSSM-based prediction method
http://bioinfo.ggc.org/bindn+/

PDNA-62 25% NO

MetaDBSite [41] 2011 Integrative tool for the prediction
http://projects.biotec.tu-dresden.de/metadbsite/
http://sysbio.zju.edu.cn/metadbsite

PDNA-316 30% NO

DNABR [42] 2012 RF-based prediction method
http://www.cbi.seu.edu.cn/DNABR/

DBP-337 25% NO

DNABind [25] 2013 Structure-based prediction method
http://mleg.cse.sc.edu/DNABind/

DS123 25% YES

SPOT-Seq (DNA) [43] 2014 Structure-based prediction method
http://sparks-lab.org

DB179 35% YES

PDNAsite [44] 2016 SVM and ensemble learning-based prediction
method
http://hlt.hitsz.edu.cn:8080/PDNAsite/

PDNA-62 and
PDNA-224

25% NO

CNNsite [29] 2016 Convolutional Neural Network-based method
http://hlt.hitsz.edu.cn:8080/CNNsite/

PDNA-62 and
PDNA-224

25% NO

TargetDNA [45] 2017 Evolutionary information-based prediction method
http://csbio.njust.edu.cn/bioinf/TargetDNA/

PFNA-543 30% YES

HybridNAP [31] 2017 DNA-, RNA-, protein-binding residue prediction
method
http://biomine.cs.vcu.edu/servers/hybridNAP/

817 DNA-binding
proteins

– YES

funDNApred [46] 2018 Fuzzy cognitive map prediction model
http://biomine.cs.vcu.edu/servers/funDNApred/

817 DNA-binding
proteins

– YES

iProDNA-CapsNet [47] 2019 Neural network-based prediction method
https://github.com/ngphubinh/iProDNA-CapsNet

PDNA-543 30% YES

DNAPred [48] 2019 Ensembled Hyperplane-Distance-based SVM
http://202.119.84.36:3079/dnapred/

PDNA-543
PDNA-335

– YES

SVMnuc & NucBind [30] 2019 Support vector machine-based ab-initio method
https://yanglab.nankai.edu.cn/NucBind/

YFK16_DNA
YFK17_DNA

30% YES

ProNA2020 [33] 2020 Neural network-based prediction method
www.predictprotein.org

308 DNA-binding
proteins

20% YES

NCBRPred [49] 2021 Multi-label learning framework method
http://bliulab.net/NCBRPred/

YK17
YK16-3.5
YK16–5
MW15

30% YES

GraphBind [34] 2021 Structure-based hierarchical graph neural network
method
http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/

573 DNA-binding
proteins

30% YES

GraphSite [35] 2022 AlphaFold2-based prediction using graph
transformer method
https://biomed.nscc-gz.cn/apps/GraphSite

573 DNA-binding
proteins

30% YES

a need to develop methods for predicting DNA interacting
residues in a protein with high precision using sequence
information.

In order to facilitate scientific community and comple-
ment existing methods, a new method has been proposed
for predicting DNA-binding residues with high accuracy.
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In this study, we created two datasets: one for train-
ing and the other for external or independent valida-
tion, which we called training dataset and independent
dataset, respectively. In order to provide unbiased eval-
uation, we remove redundant protein between training
and independent datasets. No protein in the independent
dataset has more than 30% similarity with any protein in
a training dataset. All models have been trained on the
training dataset, including optimization of parameters
of machine learning and deep learning techniques. We
optimized parameters of machine/deep learning tech-
niques using a 5-fold cross-validation technique. The
final model has been evaluated on independent dataset,
in order to avoid any biasness in evaluation. In other
words, the independent dataset has not been used to
train or tune model parameters.

Materials and methods
Dataset creation
We have downloaded the dataset from the hybridNAP
webserver [31] and recently published article ProNA2020
[33], which consists of 864 and 308 annotated protein
sequences. In order to remove redundancy, we imple-
mented CD-HIT software [50] on these datasets. In order
to compare with the hybridNAP and ProNA2020, we have
used their training dataset to train the model and inde-
pendent dataset to evaluate the performance of the final
model, after removing the redundant protein sequences
using CD-HIT. No protein in independent dataset has
more than 30% similarity with any protein in the training
dataset. Our final training dataset contains 646 protein
sequences and independent dataset contains 46 protein
sequences. Finally, we got 15 636 DNA-interacting and
298 503 non-interacting residues in the training dataset
and 965 interacting and 9911 non-interacting residues in
the independent dataset.

Pattern size
The overlapping patterns for each sequence of length 17
are generated using in-house python scripts. The central
or ninth residue is taken as the representative of the
pattern. The pattern is specified as a positive or inter-
acting pattern if the central residue is DNA-interacting,
else pattern is specified as non-interacting or negative
pattern. In order to handle the terminal residues, eight
counterfeit residues using the formula (N − 1)/2 (where
N represents the pattern length which is 17), as ‘X’ are
added at both sides of the protein sequences, as shown in
Figure 1 along with the complete workflow for this study.

Compositional analysis
In order to understand the nature of residues involved
in DNA interaction, we have calculated the amino
acid composition, residue propensity and physico-
chemical properties-based composition. The percent
amino acid composition was calculated to understand
the abundance of residues in DNA interaction. The

residues propensity is computed to understand the
preference of particular type of residues in the DNA-
binding site. The functionality of residues is based
on their sole physicochemical properties, and hence
we have determined physicochemical properties-based
composition for 25 distinct properties. All composition
properties are computed using Pfeature package [51].

Profile of pattern
In order to provide numerical representation of 17
residue patterns, we compute two types of profiles
corresponding to patterns: (i) binary profile based on
residues and (ii) physicochemical property profile based
on residue properties. The profile-based features were
calculated by modifying Pfeature [51] scripts. In the case
of binary profile, each amino acid is represented by the
vector size of length 21; for instance, A is described as
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, which comprises 20
natural amino acids and 1 dummy variable, whereas X
is denoted as 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 [52].
Therefore, each pattern is represented by the vector size
of 357 (17 ∗ 21). In physicochemical property profile, each
amino acid is designated by the vector of size 25; for
instance, A is denoted by 0,0,1,0,1,1,0,0,0,0,1,1,0,0,0,0,1,0,
0,1,0,0,1,1,0, where each position exhibits a particular
physicochemical property, and each element denotes the
presence (1) or absence (0) of that property. Therefore,
the resulting vector for each property is of length 425
(17 ∗ 25), whereas for X, all the elements are 0.

PSSM profile
The third feature that we have used in this study is the
evolutionary information. In order to compute evolution-
ary information, we generate Position-Specific Scoring
Matrix (PSSM) profile corresponding to each protein [53].
The PSSM profile was generated by employing PSI-BLAST
[54], where each protein is searched against proteins in
SwissProt database [55]. The parameters used for run-
ning PSI-BLAST were three iterations, with e-value as 1e-
3. Further, the profile was normalized using Equation (1).
The final matrix for each sequence is of dimension N×21,
where N is the length of the protein sequence, and each
pattern is depicted as the vector of length 357 (17 ∗ 21).

PSSMN = 1
1 + e−x

(1)

where PSSMN is the normalized value and x is the PSSM
score.

Machine/deep learning-based predictors
We implement python library scikit-learn for devel-
oping predictors based on traditional machine learn-
ing techniques. In order to develop deep learning
(one-dimensional CNN-based classifier) based predic-
tors, we used python library TensorFlow. In the case
of machine learning techniques, we have implemented
conventional classifiers, such as Random Forest (RF),
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Figure 1. A comprehensive workflow for feature generation (A) and model development (B). The following steps were taken to generate different profiles
from sequence: (a) generation of fixed length patterns from a sequence, (b) binary profile from pattern, (c) generation of physicochemical properties
profile and (d) PSSM profile. Overall algorithm for predicting DNA-binding residues is shown in B.

Decision Tree (DT), eXtreme Gradient Boosting (XGB),
Logistic Regression (LR) and Gaussian Naive Bayes (GNB)
to develop the prediction model.

ID-CNN model architecture
In this study, we implemented standard CNN architec-
ture for developing prediction models. It was imple-
mented using Python library Keras, which is based on
TensorFlow. Overall architecture of our hybrid model
implemented in this study is shown in Figure 2. As
shown in Figure 2, each branch have four convolutional
layers, first layer used 256 filters. It means input features
are represented by 256 filters using first layers; these
features are reduced to half in each layer. As shown in
Figure 2, final or fourth layer will provide 32 features.
Finally, we flattened all these vectors, concatenated
them and used them as a feature vector. Instead of
passing the entire vector directly for the sake of clas-
sification, we passed it through the densely connected
neural network layers to capture the importance of each
feature for the classification task. We have used the ReLU
activation function for each hidden layer because of its
simplicity and effectiveness [56, 57]. In the final layer,
we have used the sigmoid function to get the values
between 0 and 1, which were further employed to find the
optimal threshold that can provide balanced sensitivity
and specificity.

Training of models using 5-fold cross-validation
All our models were trained on the training dataset,
where parameters of models have been optimized.

In order to avoid overfitting and biasness, we have
implemented the 5-fold cross-validation. In 5-fold cross-
validation, dataset is divided into five non-overlapping
sets, four out of five sets are used for the training, and the
fifth set is kept for testing. The same process is repeated
five times so that each set gets the chance to be used for
testing. The overall performance would be the mean of
the performances of five iterations [58–60]. This five-fold
cross-validation technique is performed on the training
dataset only to optimize parameters of our models. Best
model on training dataset is used for the final evaluation
on independent dataset.

We have hyper-tuned the parameters at three levels,
such as layers that included the number of filters in each
convolution layer, size of the convolution filters, number
of dense layers and number of neurons in each layer;
functions that included loss function, type of optimizer
and activation function for different layers; and rates
such as the rate of dropout and learning.

Performance on independent dataset
Though we used a 5-fold cross-validation technique for
optimizing the parameters of machine/deep learning-
based models, still biasness in performance or overop-
timization cannot be ruled out. In order to provide unbi-
ased evaluation of newly developed models, we evaluate
the performance of our final models on independent
dataset. As independent dataset has no similarity with
training dataset, so performance is unbiased. In addition,
previously existing methods are also evaluated on the
independent dataset.
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Figure 2. Overall architecture of hybrid model implemented in this study using 1D-CNN.

Evaluation parameters
In this study, we have calculated various threshold-
dependent and threshold-independent parameters
in order to evaluate prediction models. Threshold-
dependent parameters include sensitivity (sens,
equation 2), which signifies the percentage of correctly
predicted DNA-interacting residues; specificity (spec,
equation 3), which explains the proportion of correctly
predicted DNA non-interacting residues; accuracy (acc,
Equation 4), which defines the percentage of correctly
predicted DNA-interacting and non-interacting residues;
and Matthews correlation coefficient (MCC, Equation 5),
which exhibits the correlation between observed and
predicted values. On the other hand, the threshold-
independent parameter includes area under the receiver
operating characteristics (AUROC), which is the plot
between true positive rate (TPR) and false positive rate
(FPR). The module of the R named ‘pROC’ was used to
plot the AUROC curve [61]. The equations for threshold-
dependent parameters are as follows:

Sensitivity = TP
TP + FN

X 100 (2)

Specificity = TN
TN + FP

X 100 (3)

Accuracy = TP + TN
TP + TN + FP + FN

X 100 (4)

MCC = (TP ∗ TN) − (FP ∗ FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(5)

Where FP, FN, TP and TN are false positive, false nega-
tive, true positive and true negative, respectively.

Results
Compositional analysis
We have analyzed the amino acid composition of DNA-
interacting and non-interacting residues in
DNA-interacting proteins. As shown in Figure 3, DNA-
interacting residues are rich in H, K, N, R, Y, whereas

A, D, I, L, P are sparse. It means residues like H, K, N,
R, Y are preferred and residues like A, D, I, L, P are not
preferred in DNA interactions. We have calculated the
propensity of each residue, which exhibits that K, R,
W and Y are most favored in the DNA-binding sites, as
shown in Figure 4. We have also analyzed the residues’
properties involved in interaction with DNA and found
that positively charged, basic, hydrophilic, possessing
helix secondary structure, and large are more abundant
in DNA-interacting residues shown in Figure 5.

Binary profile-based models
In order to develop the prediction models, we have gen-
erated binary profile, as it captures the compositional as
well as positional information of each residue. We have
generated the binary profile for the training dataset con-
sisting of 15 636 patterns for DNA-interacting and 298 503
non-interacting patterns; and the independent dataset
comprises 965 DNA-interacting and 9911 non-interacting
patterns. The best result for each classifier on the inde-
pendent dataset is shown in Table 1, where performances
on training dataset are provided in Supplementary Table
S1 available online at http://bib.oxfordjournals.org/. As
shown in Table 2, the logistic regression-based model and
one-dimensional CNN-based classifier (1D-CNN) obtain
an AUROC of 0.74 with MCC of 0.21 on the independent
dataset. It means that machine learning-based models
and 1D-CNN-based models developed using binary pro-
file have similar performance. It is important to note
that 1D-CNN achieved a high-performance AUROC of
0.83 on the training dataset (Supplementary Table S1
available online at http://bib.oxfordjournals.org/). This
shows that the performance of 1D-CNN is highly overop-
timized on the training dataset, despite we used 5-fold
cross-validation. Thus, it is important to evaluate these
models on the independent dataset, which is not used
for optimizing parameters.

Physicochemical property profile-based models
We have also used the binary profiles based on physico-
chemical properties for the first time in the literature to
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Figure 3. Percent composition of DNA-interacting and non-interacting residues.

Figure 4. Normalized propensity scores for DNA-interacting and non-interacting residues.

Table 2. The performance of various classifiers on independent dataset developed using binary profile

Classifier Sensitivity Specificity Accuracy AUROC MCC

DT 12.62 92.81 85.61 0.53 0.06
RF 67.05 65.29 65.45 0.72 0.19
LR 68.19 66.59 66.73 0.74 0.21
XGB 67.15 68.17 68.08 0.73 0.21
GNB 66.22 63.19 63.46 0.70 0.17
1D-CNN 70.67 66.54 66.00 0.74 0.21

DT, decision tree; RF, random forest; LR, logistic regression; XGB, eXtreme Gradient Boosting; GNB, Gaussian Naive Bayes; 1D-CNN, one-dimensional convolutional
neural network; AUROC, Area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient.

develop the prediction models. As shown in Table 3, 1D-
CNN and logistic regression-based models acquire nearly
similar performance (AUROC 0.73) on independent
dataset. Performances of each classifier on the training
dataset are reported in Supplementary Table S2 available

online at http://bib.oxfordjournals.org/. The perfor-
mance of models based on physicochemical properties
profiles acquires nearly same performance as we got in
case of binary profile-based models. We found similar
trend here also, 1D-CNN achieved high performance
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Figure 5. Percent composition of physicochemical properties in DNA-interacting and non-interacting residues.

Table 3. The performance of various classifiers on independent dataset developed using physicochemical properties profile

Classifier Sensitivity Specificity Accuracy AUROC MCC

DT 09.32 94.82 87.24 0.52 0.05
RF 63.11 63.67 63.62 0.69 0.16
LR 68.39 66.50 66.67 0.73 0.21
XGB 63.32 68.98 68.48 0.72 0.19
GNB 67.46 58.87 59.64 0.68 0.15
1D-CNN 67.08 67.86 67.79 0.73 0.20

DT, decision tree; RF, random forest; LR, logistic regression; XGB, eXtreme Gradient Boosting; GNB, Gaussian Naive Bayes; 1D-CNN, one-dimensional convolutional
neural network; AUROC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient.

(AUROC 0.86) in comparison with machine learning
techniques on the training dataset (Supplementary Table
S2 available online at http://bib.oxfordjournals.org/).

PSSM profile-based models
It has been shown in number of studies that evolutionary
information of a protein provides more information than
amino acid sequence. In order to capture evolutionary
information of proteins, we generate PSSM profile for
each protein. We have developed various prediction mod-
els by using normalized PSSM profile as the input feature,
and the performance of each classifier on the inde-
pendent dataset is exhibited in Table 4. Supplementary
Table S3 available online at http://bib.oxfordjournals.
org/ comprises different evaluation parameters evalu-
ated on the training dataset for each classifier. As shown
in Table 3, our machine learning-based (XGB) achieved a
maximum AUROC of 0.77 on the independent dataset,
which is better than models developed using 1D-CNN-
based classifier exceeded other classifiers’ performance
with AUROC of 0.74 and MCC of 0.21 for the independent
dataset.

Performance based on combined features
The combined features were generated by concate-
nating the amino acid binary profile, physicochemical

property-based binary profile and PSSM profile in the
column-wise manner for each pattern, which generated
a vector of length 1175. A wide range of machine
learning-based classifiers have been implemented to
develop prediction methods. As shown in Table 5, we
got maximum AUCROC 0.77 using LR, which is same
as we got in case of PSSM only. It means our machine
learning-based classifiers unable to capture more
information from additional information. It is interesting
to note that our 1D-CNN-based classifier achieved a
maximum AUROC of 0.79 on the independent dataset. It
means 1D-CNN able to capture additional information.
Performances for each classifier for the training dataset
are provided in Supplementary Table S4 available online
at http://bib.oxfordjournals.org/. It is clear from these
results that deep learning-based classifiers perform
better than machine learning-based classifiers in case of
additional features. In order to check the performance
of the model at protein level, we have predicted the
interaction on each protein of independent dataset and
calculated the performance measures. Finally, we have
computed the average ± standard deviation for each
measure and we obtained sensitivity of 69.45 ± 2.62,
specificity of 74.87 ± 4.61, accuracy of 73.25 ± 4.32,
AUROC of 0.78 ± 0.021 and MCC of 0.34 ± 0.026 on the
independent dataset.
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Table 4. The performance of various classifiers developed using PSSM profile on independent dataset

Classifier Sensitivity Specificity Accuracy AUROC MCC

DT 13.26 94.47 87.27 0.54 0.09
RF 73.06 62.46 63.41 0.74 0.21
LR 69.33 67.98 68.10 0.75 0.22
XGB 72.12 67.51 67.92 0.77 0.24
GNB 64.87 56.24 57.91 0.63 0.12
1D-CNN 64.89 69.97 69.43 0.74 0.21

DT, decision tree; RF, random forest; LR, logistic regression; XGB, eXtreme Gradient Boosting; GNB, Gaussian Naive Bayes; 1D-CNN, one-dimensional convolutional
neural network; AUROC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient.

Table 5. The performance of various classifiers on independent dataset developed using combined features

Classifier Sensitivity Specificity Accuracy AUROC MCC

DT 15.34 94.91 87.84 0.55 0.18
RF 70.98 63.02 63.73 0.75 0.20
LR 70.88 69.18 69.33 0.77 0.29
XGB 69.95 62.62 63.27 0.72 0.19
GNB 66.84 62.70 63.06 0.70 0.17
1D-CNN 70.78 78.40 77.72 0.79 0.32

DT, decision tree; RF, random forest; LR, logistic regression; XGB, eXtreme Gradient Boosting; GNB, Gaussian Naive Bayes; 1D-CNN, one-dimensional convolutional
neural network; AUROC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient.

Comparison with the existing methods
In order to concede the newly developed method, its com-
parison with the existing methods is of uttermost impor-
tance. The comparison conveys the merits and demerits
of the newly developed method. Since there are many
existing methods for predicting DNA-binding residues in
a protein [27, 28, 31, 33], a comprehensive comparison is
must to understand the benefits of the newly developed
method ‘DBPred’. In order to provide an unbiased com-
parison, we evaluated the performance of existing meth-
ods and the proposed method on independent dataset of
46 proteins used in this study. The performances of all
methods are reported in terms of sensitivity, specificity,
AUROC, accuracy and MCC in Table 6. Among existing
methods, DRNAPred [32] achieved a maximum AUROC
of 0.75 and MCC of 0.22, whereas SVMnuc, NucBind
[30], DNAPred [48], DNAbindR [39] and ProNA2020 [33]
achieved equivalent performance in terms of MCC and
AUROC. As shown in Table 6, our method DBPred outper-
formed the existing methods with an AUROC of 0.79 and
MCC of 0.32 on the independent dataset. The comparison
between the AUROC of the existing methods has been
shown in ROC curve (Figure 6). We are unable to compare
our methods with few methods, which are either non-
function methods or whose webserver/standalone soft-
ware is not available.

Facilities to scientific community
In order to serve the scientific community, we have
developed a webserver DBPred, to predict the DNA-
interacting residues in a protein using its primary
structure information. The facilities provided by the
webserver are available in various modules (as shown
in Figure 7) such as ‘Sequence’, ‘PSSM profile’, ‘Hybrid’
and ‘Standalone’. Sequence module allows the user to
predict the DNA-interacting residues using the binary

Figure 6. AUROC plots obtained for existing methods using independent
dataset.

and physicochemical profiles. The PSSM module allowed
to predict DNA-interacting residues in a protein using
evolutionary information. Hybrid module is based
on hybrid features (binary, physicochemical proper-
ties, PSSM profile) for predicting the DNA-interacting
residues. In addition, a standalone software package is
also available to run on local machine of users. This web
server DBPred is compatible with smart devices such as
iPhone, iPad, laptops, and android mobile phones.

Discussion and Conclusion
Biological interactions between proteins and DNA are
very crucial to understand several aspects of biological

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/5/bbac322/6658239 by N

anjing Agricultural U
niversity user on 24 Septem

ber 2023



Deep learning-based method | 9

Table 6. The performance of existing methods and proposed method on independent dataset

Method Year Sensitivity Specificity AUROC Accuracy MCC

DNABindR [39] 2006 52.16 78.09 0.71 75.80% 0.20
DP-Bind [20] 2007 47.41 71.14 0.56 69.06% 0.11
DRNAPred [32] 2017 67.67 69.19 0.75 69.06% 0.22
TargetDNA [41] 2017 48.71 77.52 0.69 74.98% 0.17
HybridNAP [28] 2017 38.79 79.58 0.66 75.99% 0.13
funDNApred [42] 2018 62.93 63.70 0.69 63.70% 0.16
DNAPred [48] 2019 67.10 65.50 0.73 65.64% 0.19
SVMnuc [30] 2019 66.81 66.57 0.72 66.59% 0.20
NucBind [30] 2019 62.50 64.86 0.72 64.66% 0.16
iProDNA-CapsNet [43] 2019 63.79 61.28 0.68 61.28% 0.14
ProNA2020a [30] 2020 42.22 76.28 0.72 74.31% 0.22
NCBRPreda [49] 2021 67.67 67.44 0.71 67.46% 0.21
DBPreda 2022 70.78 78.40 0.79 77.72% 0.32

aStandalone is also available.

Figure 7. Flowchart representing the processing of input data using three different modules of DBPred server for the prediction of DNA-interacting
residues.

processes such as transcription, translation and gene
regulation [62]. The comprehensive understanding of
interacting residues is an important aspect in the
designing of novel drugs [63, 64]. Of note, the interacting
residues can only be extracted through the three-
dimensional information of protein. PDB database
reports an ample of experimentally verified protein
structures identified using X-ray crystallography and
NMR technology [65, 66]. Studies have reported that the
3D information of protein-binding residues are helpful
in structure-based drug designing [67], where one can
understand the interaction of drug molecules with the
DNA-interacting residues [68–70]. Therefore, in the past
few decades, a number of researchers have been working
very hard to understand the physical interaction between
DNA and protein molecules. Several computational
methods have also been developed by researchers to
predict the DNA-interacting sites on protein, which
can be classified into three classes such as sequence-
based, structure-based and hybrid approaches [24, 71].

However, the major limitation of the structure-based
or hybrid methods is their dependency on the protein
structural information, which limits their application,
as determination of the protein structure is a costly,
time-consuming and very complex process [52]. On the
other hand, sequence information in various databases
is growing exponentially, enhancing the application of
sequence-based methods with reliable performance.

In the last few years, a number of computational meth-
ods have been developed for the prediction of DNA-
interacting residues. However, the datasets used in most
of the studies are very small and performance on inde-
pendent dataset is poor. Therefore, this is a need of the
hour to develop a new method using the largest dataset
for the prediction of DNA-interacting residues using pro-
tein sequences. In the current study, we have made a
systematic attempt to develop a prediction method using
the latest benchmark dataset of ProNA2020 and hybrid-
NAP. We have a total of 15 636 DNA-interacting and
298 503 non-interacting residues in the training dataset
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and 965 interacting and 9911 non-interacting residues
in the independent dataset. It was observed that certain
residues like lysine, arginine and tyrosine are more fre-
quent in DNA interaction. Most of the DNA-interacting
residues possess positively charged, basic, hydrophilic
residues and helix secondary structure properties.

In this study, we developed prediction models using a
wide range of machine learning techniques. As shown in
Results section, models based on evolutionary informa-
tion perform better than the binary and physicochemical
property-based models. Our PSSM-based models got a
maximum AUROC of 0.77 with MCC of 0.24 (Table 4).
This is expected and agrees with the previous studies,
where it has been demonstrated that evolutionary infor-
mation provide more information than single sequence.
In order to improve the performance of our model, we
developed models using hybrid features, which combine
all three types of features (binary, physicochemical and
PSSM). The maximum performance of hybrid feature-
based model was AUROC 0.77, which is same as we
achieved in the case of PSSM-based model. It means that
we are unable to combine different type of feature effec-
tively. In this study, we used 1D-CNN-based model using
different types of features and got a maximum AUROC
of 0.74 using PSSM features. The performance of our 1D-
CNN-based model increases significantly from AUROC
0.74 to 0.79, when we used hybrid features. It means our
1D-CNN-based model predicts DNA interacting residues
successfully. It is important to understand the reason of
the success behind 1D-CNN prediction of DNA-binding
residues. It is a known fact that CNN (basically 2D-CNN)
is the most successful method in image classification as
it identifies local objects. In prediction of DNA interac-
tion, we are using string of 17 characters (17 residues)
for prediction. Thus, in this study, we used 1D-CNN,
which identifies motifs in pattern and the effect of these
patterns on central residue. One of the challenges in
machine learning methods is a combination of different
types of features, as these features have different magni-
tude and characteristics. As shown in Figure 2, 1D-CNN
applies filters and generates a fixed number of features
for each type of features. Finally, convolutional layers
generate 32 features of each type of filters; these features
are combined to develop models. It means that 1D-CNN
is suitable for combining different types of features in
the prediction of DNA interactions. We anticipate that
this method can be an efficient tool for correctly pre-
dicting DNA-interacting residues in a protein sequence.
To serve the scientific community, we have provided a
standalone package and web server ‘DBPred’ to assist
biologists in the finding of DNA-interacting residues for
the sake of annotation and functional analysis. DBPred
is freely available and accessible on https://webs.iiitd.
edu.in/raghava/dbpred/ and python-based/docker-based
standalone package is available at https://webs.iiitd.edu.
in/raghava/dbpred/stand.html.

Key Points

• DNA–protein interactions play vital roles in numerous
biological processes.

• Understanding of interacting residues is a crucial aspect
of drug designing.

• In silico model was developed using deep learning algo-
rithm to predict DNA-interacting residues.

• Binary, physicochemical properties and PSSM profiles
were used as input features.

• Available as web server, python- and Perl-based stan-
dalone package and Docker container.
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